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Equilibrium molecular dynamics computer simulations have been used to determine the transport 
coefficients of model Ar-Kr mixtures, which are represented by Lennard-Jones pair potentials with 
Lorentz-Berthelot rules for the cross-species interactions. The component self-diffusion and mutual- 
diffusion coefficients are calculated from time correlation functions and mean square displacements. Time 
correlation functions are used to evaluate the shear and bulk viscosity, thermal conductivity and the 
thermal diffusion coefficient (Soret/Dufour coefficient). In the case of the thermal transport coefficients, 
the partial enthalpy of the two species is required at each state point to define the heat flux rigorously. 
We obtain this and the partial volume (and species resolved chemical potential) using particle-exchange 
(and particle insertion) techniques implemented in separate [NPT] simulations at the same state point. 

The viscoelasticity of the fluids is characterised by the relaxation times for bulk and shear stress 
relaxation. The results are for dense liquids close to the triple point temperature and density. Agreement 
with experiment and previous simulation is particularly good for the density of the mixtures, the shear 
modulus, shear viscosity, shear stress relaxation time and thermal conductivity. As for the single component 
noble gas fluids (simulated and experiment) there is a significant qualitative difference in the temperature 
and, for mixtures, composition dependence of the bulk viscosity. 

KEY WORDS: Binary mixtures, argon-krypton, MD, transport coefficients, Green-Kubo formulae. 

1 INTRODUCTION 

Transport coefficients in simple dense liquids can be calculated quantitatively by 
molecular dynamics using an appropriate time correlation function substituted into 
Green-Kubo integrand There have been numerous MD studies of the 
transport coefficients of model simple liquids, following on from the pioneering work 
of Alder, Gass and Wainwright4 for hard-sphere fluids, and Levesque, Verlet and 
Kurkijarvi’ for Lennard-Jones fluids. A noteable recent computation is by Borgelt 
et aL3, who used the Green-Kubo, GK, method to determine the self-diffusion 
coefficients, shear viscosity, bulk viscosity and thermal conductivity of a Lennard- 
Jones model for argon at numerous state points in the density range, 1.3-1.5 gcrnp3 
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124 D. M. HEYES AND S. R .  PRESTON 

and at temperatures between 100-300 K. Another recent publication, by J o s h  et u Z . ~  
reported equilibrium M D  simulations of the bulk viscosity of attractive square well 
fluids (well-width equal to half the hard-core diameter) over a wide fluid range. In 
both of these studies comparisons with kinetic theory revealed only limited success. 
At present the only effective theoretical model for transport coefficients is by 
molecular dynamics simulation. 

Non-equilibrium molecular dynamics, NEMD, is an alternative route to these 
transport coefficients. The transport coefficient is the ratio of a flux divided by the 
appropriate driving force. The linear transport coefficients (otherwise obtained by 
Green-Kubo in equilibrium MD) are determined by extrapolation of this apparent 
transport coefficient to zero driving force. (For shear viscosity, qs, the flux is the shear 
stress and the driving force is the shear rate, 3.) Again many applications of this 
method have been made7-9 and its strengths and limitations are well-documented''. 
Broadly speaking, the two techniques involve comparable computational effort if 
only linear transport coefficients are required, and the choice of either is largely a 
matter of taste and inclination. Obviously, if non-newtonian phenomena are of 
interest then only the NEMD method is of use. An interesting, recent development 
is a reassessment of the triple point LJ viscosity to larger values than were currently 
accepted. This NEMD study has produced by y1I2 extrapolation, a value of 3.41 f 
0.07 in LJ reduced units rather than -3.1 & 0.1. This new value is closer to that 
obtained twenty years ago by Levesque et aL5 using GK and largely in line 
with the value 3.6 

The simulation and experimental values for the self-diffusion coefficient, shear 
viscosity and thermal conductivity of the noble gas fluids are in 
However, there still remains an unresolved discrepancy between the temperature and 
density dependence of the bulk viscosity (sometimes called the 'compressional' or 
'volume' viscosity). There have been a number of experimental measurements of the 
bulk viscosity of fluid ', krypton l 6  and xenon' 5 9 1  '. The experimental 
evidence from the work of Cowan et uI."~'' and Baharudin et a1.16, is that, at constant 
pressure, the bulk viscosity increases with increasing temperature. This is observed 
for argon, krypton and xenon at pressures up to 60 atm. In stark contrast, the 
opposite behaviour is obtained for the M D  simulated viscosities. (Both the experi- 
mental and simulation tls decrease with increasing temperature.) At constant tempera- 
ture the experimental bulk viscosity decreases with increasing pressure. This trend 
becomes stronger as temperature rises. Again, the opposite trend is observed for shear 
viscosity, both in experiment and simulation. The most comprehensive set of 
simulated bulk viscosities comes from Borgelt et aL3 They observed a decrease in 
the bulk viscosity with increasing temperature at constant density. As the density 
(pressure) decreases, at  constant temperature, the simulated bulk viscosity decreases, 
instead of increases, as happens in experiment. (Admittedly, the experimental Xe data 
does show some evidence of a reverse of this trend close to the triple point. But the 
simulations manifest a consistent trend at all temperatures as well as close to the 
triple point.) Therefore both the pressure and temperature dependence of the 
simulation bulk viscosity for LJ fluids is the opposite to that observed experimentally. 
The results of the present study confirm the previous simulation results. Before leaving 

0.1 obtained by Heyes" using NEMD. 
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TRANSPORT IN Ar-Kr MIXTURES 125 

the topic of bulk viscosity we note that, unlike the shear viscosity, the bulk viscosity 
cannot be measured directly by experiment but must be extracted from ultrasonic 
attenuation in the fluids. The other fluid properties needed before this can be achieved 
are thermal conductivity, shear viscosity and the specific heat at constant pressure. 
Consequently it is a quantity for which greater uncertainty is to be expected. 
Nevertheless, the large body of different experiments and simulations does indicate 
a major fundamental discrepancy, which is extremely curious. Much of the interest 
in bulk viscosity has been centred on the triple point of the noble gas fluids. Both 
equilibrium and NEMD studies have been made at this state point’*-’’. The main 
point of interest here has been in qs.qB, which for experiment and simulation has a 
value of 0.33 F 0.02. So in this number there is now a concensus of agreement. The 
behaviour of this ratio in these single component fluids in the predominantly higher 
temperature states more often studied is still in significant disagreement, however. 

Mixtures have considerable practical and theoretical current interest. The purpose 
of the present work is to apply the same equilibrium MD techniques to binary fluid 
mixtures, with the objective of characterising the density and temperature dependence 
of the same transport coefficients. There has been some work performed on binary 
mixtures, but only at scattered state points and only calculating a limited number of 
transport coefficients (not always the same ones) at each state point considered. 
Mixtures have a distinct self-diffusion, D, for each species or component, v,  a shear 
viscosity, qs, and thermal conductivity, IC. In these many-component mixtures there 
are additional transport coefficients to those of the single components, quantifying 
the mass flux and heat flux intermixing between the species. These clearly have no 
counterpart in the single component fluids and include the ‘cross’ transport coeffi- 
cients, DT, of thermal diffusion (the Soret effect) and the diffusion thermoeffect (the 
Dufour effect), which are numerically identical in the linear response regime according 
to the Onsager reciprocal relation. Molecular dynamics simulation has been used to 
calculate The small magnitude of these thermo-diffusion coefficients gives 
rise to values with comparatively large percentage statistical uncertainties. 

There is also the mutual diffusion coefficient, D,, which is mainly sensitive to the 
cross-species interactions as these are particularly influential in governing the 
interdiffusion of the total number of molecules of the two species. D,, has been 
evaluated by simulation for LJ2s-27, soft-sphere (SS)” and hard-sphere mixtures29. 
The accuracy of the D,, is considerably greater than that of the thermo-diffusion 
coefficients. These supplementary transport coefficients are calculated here using time 
cross-correlation functions in Green-Kubo expressions involving the excess thermo- 
dynamics of the mixture in their definition. In the case of mutual diffusion this appears 
as a multiplicative factor, Q ,  in the Green-Kubo integrand of the component 
momentum flux autocorrelation function. For the thermal conductivity and DT, the 
heat flux itself has the component partial enthalpies in its definition, which is absent 
for a single component system3’. In this study we determine the contribution of this 
enthalpic term to DT and the thermal conductivity. 

Simulation has also been used to determine the thermal conductivity and shear 
viscosity of model binary mixtures. Evans and H a n l e ~ , ~ l * ~ ~  and com- 
puted the shear viscosity of binary SS mixtures for several size and mass ratios. 
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126 D. M. HEYES AND S. R. PRESTON 

In this study we concentrate on the transport coefficients of binary fluid mixtures, 
in the liquid Ar-Kr regime for which e ~ p e r i m e n t a l ~ ~  and some simulation data20*21 
already exists. We consider a more comprehensive set of state points than in previous 
work to calculate all of the mixture transport coefficients using the most recent 
statistical mechanical expressions for them. Our concern here is not in the mixing 
rules for the transport coefficients. more in the extent to which the M D  model can 
simultaneously reproduce the transport coefficients of specific mixtures for which 
there is experimental data. Mikhailenko et aL3’ determined the bulk and shear 
viscosity of argon-krypton mixtures in the temperature range, 90-140 K over the full 
composition range. Consequently our simulations were carried out at the same state 
points. They found that the shear viscosity increased at  constant temperature on 
going from pure argon to pure krypton. This is expected on corresponding states 
grounds, as the Kr is at a lower effective reduced temperature, k,T/E, where E is the 
well-depth of the effective pair potantial. The thermal conductivity manifests a more 
moderate increase as the mole fraction of Ar, xAr + 0 at constant temperature. The 
bulk viscosity exhibits a completely different composition dependence. The qB reaches 
a maximum at xAr - 0.5, which yls being nearly equal for the pure argon and pure 
krypton at the same temperature (which would appear to defy corresponding states 
principles). We reveal that, as for single component fluids, there are significant 
differences between the simulated and experimental bulk viscosity. 

2 THEORY AND SIMULATION METHOD 

Fluid parameters 

We consider a system of N ,  particles (‘atoms’) of mass m ,  and N ,  particles of mass 
m2 contained in a volume V ,  mediated through a Lennard-Jones, LJ, (12-6) potential, 

where p and v are the indices of the two species (i.e., ranging from 1 to 2). The 
cross-interactions governed by the generalised mixing rules, 

These are the Lorentz-Berthelot mixing rules. The details of the simulation technique 
have been described elsewhere’. The M D  simulations were performed using cubic 
unit cells of volume V containing mainly N = 256 Lennard-Jones (LJ) particles, 
although several simulations were conducted with N = 108 to assess the N-de- 
pendence of the properties. The interactions were truncated at  half the box sidelength 
(S/2). We use both real and LJ reduced units (based on the parameters for species 1, 
which is Ar) in this report. For example, for temperature, k,T/&,, + T*, and number 
density, p* = No; , /V .  Reduced time is in units of 011(ml/t11)112,  viscosity in 
(mlE1 l)1’2/afl. thermal conductivity in k,(m,/E, ,)- ”20;:, self-diffusion coefficient in 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSPORT IN Ar-Kr MIXTURES 

Table 1 
in the simulations, taken from Ref. [22]. 

Molecular fluid parameters for the Lennard-Jones molecules used 

Molecule ml/u e l l l k B  ull/nm mt &: 1 6 1 

K 

127 

~~ 

Ar 39.95 119.8 0.3405 1 1 1 
Kr 83.80 167.0 0.3633 2.0976 1.3940 1.06696 

gli(cll/ml)1'2 and pressure tensor components in .cllo;:. The time step, h, was 
typically ~ 0 . 0 1  in reduced units. In Table 1 we give the LJ and real parameters for 
the model molecules considered in this work. Also in any study comparing simulation 
and experiment it is convenient to have interconversion factors to compare real and 
LJ reduced units. These we give in Table 2. Simulations performed on the CRAY- 
XMP at ULCC using CFT77 were for typically -2 x lo5 time steps in production 
for each state point. 

Thermodynamic Properties 

The mean configurational energy, U ,  of the N particles is accumulated as the time 
average, 

N N  

u = f c 1 hj + N U l , , ,  
i j  

(4) 

Table 2 Conversion factors from reduced to real units, i.e., one combination of reduced units from the 
second column corresponds to the real units in the third and fourth columns. The reduced units, m, E and 
u are based on Ar, given in Table 1. 

~ ~~ 

Quantity Reduced units Coeficient Real units 

Mass, m m 6.6339 kg mol-' 
Time, t um1/2E1/2 2.1564 10-12 s 
Number density, p u - ~  4.2063 mol ~ r n - ~  
Number density, p K 3  9.4280 10' Amagat 

Number density, p K 3  3.5249 g c m  (Kr) 
Number density, p K 3  2.6027 g cm-3 (0.5Ar + 0.5Kr) 
Volume, V u3 23.774 cm3 mol-' 
Total Energy, E E 0.99607 kJ mol-' 
Pressure, P 41.898 M Pa 

0.90349 Pas Viscosity, q m1/2&1/2 - 2  

Diffusion coeff., D m-'l2 E U  5.3765 lo-* m2 s-l 
m - l / 2  E D  112 - 2  1.3619 1011 ,-1 s - I  

m -  1/2E1/2u-2 
PD 
PD 
PD 
DT 

Number density, p u - ~  1.6804 g cm;: (Ad  

Thermal cond., IC k,m-1/2e1/2u-2 1.8803 10-2 J m - l  K-1 s - l  

5.0690 Amagat m2 s-I 
m- 1/2&1/2 - 2  1.8558 (T/K)(P/Atm)-I lo-' atmm2 s-l  
m1/2E1/2 - 2  9.0349 m - ' s - '  kg 

U 

Note: kT is dimensionless. An Amagat is the number density of an ideal gas at 1 atm and 0°C. (Ref Collocot, T. C., 
and Dobson, A. B., Dictionary of Science and Technology, Chambers, 1974.) 1 Amagat = 1.06067 x 10-3a-3. 
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128 D. M. HEYES AND S. R.  PRESTON 

where N = N ,  + N 2 .  For mole fractions, x, = N , / N  and x 2  = N , / N ,  and partial 
number densities, p,, = N , / V =  x,,p. The interactions need to be truncated at a 
separation, rc 5 S/2 .  The long range corrections for r i j  > rc are, 

ulrc = uGc + ufrc,  ( 5 )  

where 

8n 
91.: G r c  = - C x I E l  Ipla;: + 2 x 1 ~ 1 2 ~ 2 a f :  + x 2 & 2 2 ~ 2 a : ? I ,  (6) 

and 

The lower case symbols denote intensive (i.e., per particle) quantities, whereas upper 
case symbols represent the extensive quantities for the entire system, e.g., u = 
U /  N + ulrC. Similarly, the mean enthalpy per particle is h = H / N ,  where 

H =. K ,  + U + PI/.  (8) 

The kinetic energy per particle, k ,  =- K , / N  is obtained from, 

i 

where p y i  is the momentum of particle i of species v. The instantaneous temperature is, 

T = 2K,/(3N - 4)ks. (10) 

The temperature and momenta are fixed, resulting in the removal of four degrees 
of freedom in Equation (10). The pressure is given by, 

where the long-range correction to the pressure has a contribution from the 
repulsive ( r )  and attractive (a) components of the pair potential, 

Pin. = P L c  + P f r c ,  (12)  

where, 

and 
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TRANSPORT IN Ar-Kr MIXTURES 129 

Partial molar quantities 

The partial molar enthalpy is needed later to determine the exact expression for the 
heat flux. Below we outline the procedure for accomplishing this in an [NPT] 
ensemble MD simulation. For intensive property, y = Y/N,  and mole fractions, xi we 
have for an rn-component mixture the partial thermodynamic quantity, 

Yi = (aY/axi)x, ,  T , P .  (15) 

From Euler's theorem we can relate the ensemble average thermodynamic quantity, 
y to these partial derivatives, 

For a binary system this reduces to, 

The total sum of the mole fractions, x is of course, 
m 

x = c x i =  1. 
i 

If we define, 

and, 
Yz = Y - X l A Y .  

These partial molar quantities have been evaluated for the specific enthalpy, h, 
and specific volume, v = V/N. We used the [NPT] ensemble to determine the partial 
thermodynamic quantities, using a recently proposed 'particle-swap' method for 
determining the A y I 4 .  Each time step the energy change, AU, was evaluated, caused 
by replacing a particle by one of the other species without altering the configuration. 
For example, for the two species 1 and 2, the energy change on 'removing' a 1 atom 
and 'replacing' it by a 2 atom, AU2+'-, 

Also, 
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130 D. M. HEYES AND S. R.  PRESTON 

where b = (k,T)- I .  In the simulation each particle in turn was chosen every time 
step as a candidate for this exchange. We also use Widom's particle insertion method 
to obtain p, and p2 directly. If A U 1 +  is the energy of a test particle of species 1 
randomly inserted in the fluid, 

1'1 = -P- '  l n ( e x P ( - B A U 1 ~ ) ) N ~ . ~ . ~ , N ~ - I ,  (24) 
The transposed expression (i.e., 1 + 2 and 2 + 1 in Equation (24) leads to an 
expression for p 2 ) .  At every time step, we randomly positioned N ,  molecules of species 
1 and N ,  molecules of species 2 in the fluid. Also, 

Ah = h ,  - h2 

- (AU2* '- exp( - /?AU2'1-))Nl ,N:  _ -  
(exp( - PA " * I 1) ,Xi. N? 

- [(Hexp(-bAU2-'-)),~.N2 - (H)N,,N2(eXP(-BAU2i1~))NI.Nrl, (25)  
(exp(-pAU2' ' - ) > N , , N Z  

and for the volume, 
A c = u  --1: 1 2  

The [NPT] equations were introduced in the MD code by box sidelength and 
velocity rescaling procedures which were simple to implement and stable to arbitrary 
starting conditions fc.f. Ref. [36]). Constant temperature was achieved approximately 
using Woodcock's velocity rescaling procedure in a Verlet leapfrog algorithm2. For 
the desired temperature, To and instantaceous temperature, T ,  (based on the half-time 
step momenta) we determine a momentum rescaling factor, 

- P(t  + h/2) = P( t  - h/2) + F(t)h, (28) 

where is the systematic force. For each molecule, the new half-timestep velocity is 
rescaled, p( t  + h/2) + f p ( t  + h/2). The Anderson constant pressure equations of mo- 
tion wereemployed to-establish an average pressure Po in the system. This can be 
rewritten as a series of rescaling operations applied to the molecular co-ordinates 
and velocities as follows. For a position, c, and momentum, - p, 

i = p + &, (29) 

j = - E p ,  (30) 

v =: ( P  - Po)/M,, (31) 

where the Anderson mass, M A  = 0.005m1, typically, 

. v  
& = - .  

3v 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSPORT IN Ar-Kr MIXTURES 131 

We use the velocity-Verlet algorithm to update the cell volume and implement 
Equations (29H32) in timesteps, h. 

V(t + h/2) = V(t  - h/2) + V(t)h, (33) 

The box sidelength S = V1I3 is recalculated each time step to apply the periodic 
boundary conditions appropriate to the new MD cell dimensions. The long range 
corrections are also rescaled each time step, 

p:rc = p;:c(s/s)9, (41) 
where S' is the sidelength used to evaluate reference long range corrections, 
and PiK. 

in order to maintain the same molecules in each N-coordination shells after rescaling. 

U;;~P;: ,  

Each time step, the interaction truncation distance is scaled in proportion to S', 

3 TRANSPORT COEFFICIENTS 

In this section we discuss the formulae used to determine the transport coefficients 
of the system. The [NVT] ensemble was used in the molecular dynamics to determine 
the transport coefficients. The transport coefficients for a binary mixture of species, 
v = 1, 2, can be derived from the microscopically defined fluxes of matter, J , ,  and 
energy, la. Using and adapting the notation of MacGowan and Evans2',22, 

- J" = NP,(U" - u)/K (42) 
where from the particle momenta, pi, - 

and, 

As is conventional in a simulation, 111 = 0 at the start of the simulation and it does 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



132 D. M. HEYES AND S. R. PRESTON 

not deviate from this within machine error for the duration of the simulation. Hence, 
J,  = - J 2  at all time, within machine error ( -  1: 10- 12) .  

The heat flux employed in the definition of the transport coefficients thermal 
conductivity and Soret (Dufour) coefficient, J a ,  is defined as follows, 

J Q  = J p  - 2 JvCh,./ml, + f (Jl , /m,~,)21,  (45) 
\' 

where h, is the specific partial enthalpy of species v, evaluated using Equations 
(20) and (21). The term involving h, removes from the heat flux, JQ., the enthalpy 
flux contribution associated with the interdiffusion of the one species through the 
other. 

1 N. 

The momentum 
the dyad formed 

The species or 

C{pi/mv - ~ ) m v : P i / m v  - u ) ~  + 2 {? i /m,  - U) . (4ijJ - gij~ij)I. (46) 
j 

and position of particle i are - qi and - p i ,  respectively, - qijFij is 
out of the two vectors. 
v-dependent velocity (v) correlation function is, 

The self-diffusion for each component is, 

Time correlation functions were integrated numerically by Simpson's rule to obtain 
the transport coefficients. As confirmation, the D, were evaluated also using the mean 
square displacements, i , ( t ) ,  

In this function the particle positions, r-f are not subjected to periodic boundary 
condition, PBC, shifts and can take on values outside the M D  cell. (Particles always 
confined within the M D  cell by applications of PBC are denoted by ~ ( t ) ) .  The 
self-diffusion for each component is then, 

The shear viscosity of the mixture is given by the following Green-Kubo relationship, 

I? = ( V / k ,  77 1; V,,(O)P,,(t)>~t> 

where P,, is the ap (z # 8) component of the pressure tensor, p ,  which is, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSPORT IN Ar-Kr MIXTURES 133 

where roij is 
generalised 
modulus of 

the c1 Cartesian component of rij. Equation (52) is simply the m-species 
formula used in single component fluids. The infinite frequency shear 
the mixture is given by the following fluctuation expression, 

cc = ( v /kB  T ) < P a p ( o ) )  ( 53 )  

The bulk viscosity of the mixture is given by the following Green-Kubo relation- 
ship, 

q B  = ( V / 3 k B T )  J:((P(t) - (P))(P(o) - ( P ) ) ) d t .  (54) 

The bulk modulus combination, K ,  - K O ,  of the mixture is given by the following 
fluctuation expression, 

K ,  - KO = ( v / 3 k ~ T ) ( ( P  - ( P ) ) 2 .  ( 5 5 )  

The value of this quantity and also vB will depend on the ensemble used to carry 
out the simulations. Here we employ [NVE] and [NVT] dynamics for all these 
quantities. At constant E, the adiabatic zero frequency bulk modulus KO will appear 
in Equation (55). At constant temperature, the isothermal bulk modulus will be the 
appropriate quantity. Quantities of current interest are the ratio of bulk to shear 
viscosity, qB/q and the corresponding ratios if the moduli, G , / ( K ,  - KO).  These in 
turn lead to the phenomenological relaxation times, T = q/Gm and T~ = qB/(K,  - KO) 
which characterise the viscoelastic responses to small shear and volume strain 
distortions, respectively. 

The thermal conductivity, K is computed from, 

where JQ, is the CI component of the heat flux, -JQ. If we neglect the last term 
in Equation (45) as being insignificant (see the discussion) and let a = -h,/m, and 
b = -h,/m, then from (45) and (56) we can calculate three components of ti each 
determined by a different time correlation function, 

ti = “Q’Q‘ + KQ’J + “ J J ,  (57) 
where, 

making use of J ,  = - J 2 .  We see that as a + b  the terms ‘ c ~ , ~ ,  (63) and t iJJ,  

(59) tend to zero. Therefore the formula for the single component fluid is recovered. 
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134 D. M. HEYES AND S. R .  PRESTON 

Equation (62) only remains, being the m-species generalised expression for the single 
component fluid. 

The Soret, ( J Q J , )  and Dufour, ( J , , J a )  thermal diffusion coefficients are derived 
from, 

By the principal of microscopic reversibility, 0,' = D g ,  which we simply denote by DT 
here. Separating Equation (64) into the heat flux components as for K we obtain, 

(65) DT zzz DT sQ'J  + OSJ,  

where, 

Equations of the same form apply for the decomposition of the Dufour coefficient, 
with Q' and J simply permuted. 

The mutual diffusion coefficient, D,, ,  just as for D,,, can be calculated from a 
correlation function or an equivalent mean square displacement. We use both routes 
as a consistency check on the numerical computations. 

(68) 

where if gJr) is the species component pair radial distribution function, 

G,, = 4 z  r2dr(gy,(r)  - l), 1; 
evaluated here using Simpson's rule. If, 

then, 

An alternative form for D,, is from the average square of the distance that the 
centre of mass of species v particles moves in time t ,  
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TRANSPORT IN Ar-Kr MIXTURES 135 

where, 

i =  1 

from which, 

From D, and D,, we can define a dimensionless quantity, thermal diffusion ratio, 
k T ,  as a measure of the relative importance of thermal and inter-diffusion, 

where, 

The value of c is somewhat arbitrary. The above choice is the same as that of 
Hirschfelder et a/.". 

4 RESULTS AND DISCUSSION 

Most of our simulations were conducted at zero applied pressure along two isotherms 
for variable Ar/Kr compositions. The two temperatures concentrated upon were 
T = 120 K and T = 140 K. (In LJ Ar reduced units, using the parameters from Table 
1, these correspond to T* = 1.00167 and T* = 1.16861, respectively.) 

Summaries of the state points considered and derived thermodynamic quantities 
from [NPT] simulations are given in Table 3. This table incorporates the average 
enthalpy per particle and the species-resolved chemical potentials. The corresponding 
partial quantities yi for enthalpy and volume are given in Table 4. They are as 
statistically well-defined and N-independent as the thermodynamic averages given in 
Table 3. The table reveals that partial quantities are significantly less sensitive to 
composition than the average ensemble quantities (such as energy and enthalpy). The 
present LJ model accounts exceptionally well for the density of the mixtures at 
arbitrary composition, and also the effects of temperature. The essentially exact 
agreement between experiment35 and simulation is demonstrated in Figure 1. It 
reveals that there is a near-linear relationship between the densities of the liquids 
between the extremes of pure Kr (on the left of the figure) and Ar (on the right of 
the figure). 

We calculated the Ar-Kr binary mixture transport coefficients by simulation using 
the formulae described in the previous Section 3. As representative examples of the 
time correlation functions we show, in Figure 2, the x-Cartesian component resolved 
momentum flux autocorrelation function of an equi-molar Ar-Kr mixture is shown. 
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136 D. M. HEYES AND S. R. PRESTON 

Table 3 Thermodynamic quantities of the model liquid Ar-Kr mixtures at 1 Atm 
pressure in reduced units. The specific average enthalpies and chemical potentials of the 
two species from Equation (24) are given. 

N P 

256 
256 
256 
108 
256 
256 
256 
256 

256 
256 
108 
256 
256 
256 
256 
256 

0.02344 6 
0.20312 52 
0.39844 102 
0.60185 65 
0.60156 154 
0.60156 154 
0.79687 204 
0.97656 250 

0.03906 
0.20312 
0.40741 
0.39844 
0.601 56 
0.601 56 
0.79687 
0.97656 

10 
52 
44 

102 
154 
154 
204 
250 

~ 

0 68997 
0 698 72 
0 7050 
0 71373 
0 71035 
0 7101 8 
0 70808 
0 70043 

0 64579 
0 6480 1 
0 649: 5 
0 64724 
0 6385 1 
0 63849 
0 61726 
0 56227 

T h P I  

1.00167 -6.848 -3.15 
1.00167 -6.227 -3.36 
1.00167 -5.545 -3.40 
1.00167 -4.874 -3.40 
1.00167 -4.832 -3.45 
1.00167 -4.831 -3.46 
1.00167 -4.129 -3.50 
1.00167 -3.471 -3.49 

1.16861 
1.16861 
1.16861 
1.16861 
1.16861 
1.16861 
1.16861 
I .  16861 

- 5.89 I 
- 5.308 
-4.609 
-4.610 
-3.851 
- 3.851 
- 3.073 
-2.189 

-3.01 
- 3.09 
- 3.09 
-3.15 
-3.18 
-3.18 
-3.17 
-3.10 

~ 

P2 

- 5.96 
- 5.82 
-5.83 
- 5.80 
- 5.74 
- 5.76 
- 5.82 
- 5.66 

- 5.39 
- 5.43 
- 5.38 
- 5.39 
- 5.29 
- 5.30 
-5.19 
- 4.9 1 

The negative region between 0.2 < r < 0.4 may be a reflection of the 'back-scattering' 
events in the velocity autocorrelation function component of the flux autocorrelation 
function. The time integral of the flux is presented in Figure 3. In Figure 4 we show 
the associated stress autocorrelation functions for the same state point (i.e., Pxy ,  P,, 
and Pyz) .  As is typical for stress tensor component autocorrelation functions they 

Table 4 Partial Mixing Properties of model liquid Ar-Kr mixtures at 1 Atm pressure by 
simulation in reduced units. The partial enthalpies are obtained using [NPT] dynamics and 
equations (20) and (21). 

256 
256 
256 
108 
256 
256 
256 
256 

256 
256 
108 
256 
256 
256 
256 
256 

~~ 

0.02344 
0.203 I2 
0.39844 
0.60185 
0.60156 
0.60156 
0.79687 
0.97656 

0.03906 
0.203 12 
0.40741 
0.39844 
0.601 56 
0.60156 
0.79687 
0.97656 

~ 

6 
52 

102 
65 

154 
154 
204 
250 

10 
52 
44 

102 
154 
154 
204 
250 

0.68997 
0.69872 
0.7059 
0.71373 
0.7 1035 
0.71018 
0.70868 
0.70043 

0.64579 
0.64801 
0.64935 
0.64724 
0.63851 
0.63849 
0.61726 
0.56227 

1.00167 
1.00167 
1.00167 
1.00167 
1.00167 
1.00167 
1.00167 
1.00167 

1.16861 
1.16861 
1.16861 
1.16861 
1.16861 
1.16861 
1.16861 
1. I6861 

- 3.53 
- 3.54 
- 3.48 
- 3.46 
- 3.42 

- 3.41 
- 3.38 

- 3.42 

- 2.48 
-2.51 
- 2.48 
- 2.45 
-2.35 
- 2.38 
- 2.22 
- 2.05 

-6.93 
- 6.9 1 
-6.91 
- 7.01 
- 6.97 
- 6.96 
- 6.97 
- 7.08 

- 6.03 
- 6.02 
- 6.07 
- 6.04 
-6.11 
-6.12 
- 6.43 
- 8.04 

1.35 1.45 
1.36 1.45 
1.38 1.44 
1.40 1.41 
1.40 1.42 
1.40 1.42 
1.42 1.38 
1.43 1.29 

1.51 1.55 
1.53 1.55 
1.57 1.52 
1.58 1.53 
1.63 1.47 
1.63 1.47 
1.71 1.27 
1.83 0.06 
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TRANSPORT IN Ar-Kr MIXTURES 137 

0.0 0.2 0.4 0.6 0.8 1.0 

XI 

Figure 1 The dependence of the density of the liquid on the mole fraction, x1 of Ar. Key: Experiment, 
T = 120 K, 0 T = 140 K; simulation results, +, N = 256 T = 120K, x ,  N = 108, T = 120 K ,  0, 

N = 256 T = 140 K, e, N = 108, T = 140 K .  

0 0.2 0.4 0.6 0 . 8  1 1 . 7  
I ,  

t 
Figure 2 The flux autocorrelation function, v2(J,,(0)J,,(t)> for a model Ar-Kr mixture with x,  = 
0.60156, p* = 0.71018 and T* = 1.00167. 
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138 D. M. HEYES AND S. R. PRESTON 

T.'  " ' 

n.2 o u 0.6 0 . 8  J 1 . 2  

1 
Figure 3 As for Figure 2, except the integrated flux is given. 

t 
Figure 4 As for Figure 2, except that the shear stress autocorrelation function, (P=,&O)P&)), is 
given. Key: rp  = xy ,  0; rp = xz, -; zp = yz, A. 
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TRANSPORT IN Ar-Kr MIXTURES 139 

1 . 2 5 -  

show a more monotonic decay with no noticeable negative lobe at t - 0.2. The 
integrated time dependent shear viscosity from Equation (51) is given Figure 5. 

We carried out simulations on model pure argon to determine the ensemble 
dependence of the transport coefficients. We considered [NVE] and [NVT] en- 
sembles. The table 5 reveals that the only transport coefficient manifesting a 
significant ensemble dependence is the bulk viscosity. The [NVE] values are smaller, 
largely due to a smaller K ,  - K O  in the [NVE] case rather than at [NVT]. At 
constant E the relevant zero frequency modulus, K O  is the adiabatic quantity, whereas 
at constant temperature we have the isothermal K O .  Nevertheless, with both isother- 
mal and isoenergetic simulations the bulk viscosity decreases with increasing tempera- 
ture, the opposite trend to experiment (as discussed in the Introduction). It is 
reasonable that the temporal nature of pressure fluctuations will be sensitive to the 
ensemble of the simulation. The table reveals that (apart from the diffusion coeffi- 
cients) all the moduli and transport coefficients diminish with increasing temperature 
at fixed pressure. 

In Figure 6 we show the bulk viscosity autocorrelation function from an [NVE] 
simulation, and its time-integral in Figure 7. In order to obtain the correlation 
function of Equation (54) from (P(O)P(t))  we need to subtract off r + 30 of (P(O)P(t)). 
For correlation functions persisting for 200 time steps we take the average of 
(P(O)P(t)) over the last n time steps of the duration of the correlation function. In 
Figures 6 and 7 we show the effects of using n = 25, 50 and 75. The figures reveal 
that there is little statistical difference between them. In Figure 8 we show the J ,  

1 
U aJ 
0 
L 
07 
aJ 

C 

L 

L 

. -  

1 

0 .?S 

0.5 

0.25 

0 0.2 0.4 0 .6  0.8 1 1 . 2  l . U  

t 
Figure 5 As for Figure 4, except the corresponding integrated viscosities are shown. 
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140 D. M. HEYES AND S. R. PRESTON 

Table 5 Transport coefficients of model LJ Ar  in reduced units. The statistical 
uncertainty is f 5%. All calculations were carried out at constant temperature, in 
the [NVT] ensemble, except the rows denoted by t which denote [NVE] ensemble 
simulations. N = 256. 

P 

0.8442 0.722 23.09 3.27 24.63 2.98 6.73 0.0254 
0.8442 0.774 26.14 3.28 13.71 1.03 7.90 0.0282t 
0.715 0.915 17.81 1.61 21.21 1.70 5.30 0.0556 
0.715 0.896 17.13 1.67 12.40 0.74 4.95 0.0544t 
0.570 1.20 9.98 0.73 10.53 0.83 3.04 0.1184t 

autocorrelation functions for a near equi-molar mixture. The corresponding inte- 
grated thermal conductivity is given in Figure 9. 

In Table 6 we present the transport coefficients derived from these simulations. 
We have conducted an isolated simulation at a near-triple point state to compare 
with a previous simulation*'. Agreement is good for the shear viscosity and thermal 
conductivity but the present simulations produce a value for the bulk viscosity 
approximately double the value of the previous work. This is expected, given the 
evidence of Table 5, as [NVT] dynamics was used for the present study at this isolated 

t 
Figure 6 The pressure deviation autocorrelation function, Cdt) = ((P(f) - (P)) (P(O)  - (P))), where 
P = P - ( P ) .  The ( P ) 2  are taken from the long time value of (P(t)P(O))  averaged over (a) the last 75 time 
steps, ~ , (b) 0 the last 50 time steps and (c) the last 25 time steps. A. (The correlation function 
extends for 200 time steps.) The state point is p = 0.70868, T = 1.0027 using [NVE] dynamics from the 
correlation functions from Figure 6 and Equation (54). 
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0.1; 

0.1 

0 .OE 

0.06 

0.011 

0.02 

0 

141 

I 

x 
Lo 
L . -  

$ 0.8 

Lo 
> 
Y 

_c1 

U 
(1, 

0 0.u 

L 
Cn aJ 
C 

. -  

- 
-J 0.6 

L 

L 

. - 0 . 2  

I 

0.5 1 I .5 2 

t 
Figure 7 As for Figure 6, except that the time integrated bulk viscosity is shown. 

t 
0.25 0 . 5  0.75 1 1.25 1.5 1 . 7 5  I 

t. 
Figure 8 The heat flux autocorrelation function, (Jp,(0)J,,(t)) for a model Ar-Kr mixture with 
x1 = 0.60156, p* = 0.71018 and T* = 1.00167. Key: GI = x, 0 ;  GI = y, -; ct = z, A. 
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0 0.25 0 . 5  0 . 7 5  1 1 . 5  I . 5  1 . 7 5  ? 

t 
Figure 9 As for Figure 8, except that the integrated thermal conductivities are given. 

Table 6 Transport coefficients of model binary mixtures of model LJ Ar-Kr reduced units. 
The statistical uncertainty is f 5%. All calculations were carried out at constant temperature, 
i.e., in the [NVT] ensemble, except the results in the rows denoted by t which were derived in 
the [NVE] ensemble. Key: simulation * Ref. [S]. 

256 0.5 
256* 0.5 

256 0.02344 
256 0.02344 
256 0.20312 
256 0.39844 
256 0.39844 
108 0.60185 
256 0.60156 
256 0.79687 
256 0.79687 
256 0.97656 
256 0.97656 

256 0.03906 
256 0.03906 
256 0.20312 
256 0.39844 
256 0.39844 
256 0.60156 
256 0.79687 
256 0.79687 
108 0.97222 
256 0.97656 
256 0.97656 

0.703 
0.703 

0.68997 
0.68997 
0.69872 
0.70597 
0.70597 
0.7 1373 
0.71018 
0.70868 
0.70868 
0.70043 
0.70043 

0.64579 
0.64579 
0.64801 
0.64724 
0.64724 
0.63850 
0.61726 
0.61 726 
0.56227 
0.56227 
0.56227 

0.968 20.41 
0.968 - 

1.0017 26.11 
1,0204 26.70 
1.0017 24.64 
1.0017 22.32 
0.9845 21.88 
1.0017 20.27 
1.0017 20.24 
1.0017 17.65 
1.0027 17.86 
1.0017 15.48 
0.9915 15.09 

1.16861 22.10 
1.1555 21.81 
1.16561 20.50 
1.16361 18.04 
1.1427 17.66 
1.16361 15.57 
1.16861 12.78 
1.1867 13.26 
1.16861 9.30 
1.16861 9.37 
1.1747 9.43 

2.35 
2.27 

4.26 
4.55 
3.61 
2.63 
2.84 
2.09 
2.20 
1.58 
1.66 
1.27 
1.25 

2.84 
2.86 
2.2 1 
1.82 
1.82 
1.38 
0.98 
1.07 
0.69 
0.68 
0.70 

23.55 2.52 
1.12 

27.35 3.62 
14.53 1.70 
25.74 3.03 
24.72 2.34 
14.11 1.64 
23.59 2.21 
23.29 2.16 
21.22 1.62 
13.11 0.99 
19.20 1.23 
12.63 1.06 

- 

25.42 2.83 
14.51 1.33 
23.92 . 2.05 
22.55 1.92 
13.45 1 .oo 
19.70 1.53 
16.86 0.88 
12.38 1.12 
12.65 0.78 
12.83 0.60 
10.48 1.09 

4.2 1 
4.22 

4.82 
4.821. 
4.70 
4.13 
4.631. 
4.48 
4.59 
4.55 
4.35t 
4.54 
4.59t 

3.94 
3.49t 
3.80 
3.46 
3.37t 
3.67 
3.30 
3.49t 
2.68 
2.59 
2.82t 
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TRANSPORT IN Ar-Kr MIXTURES 143 

state point and [NVE] dynamics for the previous work. Support for the present 
algorithm is found in a comparison between the bulk viscosities of the higher 
temperature state points produced by these simulations and the experimental values 
discussed below. In Figure 10 we compare the experimental and simulation shear 
viscosities in real units at T = 120 K and T = 140 K and as a function of composi- 
tion. As expected, the viscosities decrease in magnitude as the argon content increases, 
because the pure krypton liquid is at an effectively lower T* than the argon at the 
same absolute temperature (K). The simulation and experimental values for qs are 
statistically indistinguishable, following an approximate linear relationship with 
composition between the two pure liquids. 

Also for the bulk viscosity, the value decreases as pure argon is approached, 
shown in Figure 11. The experimental bulk viscosities are of similar magnitude (as 
xAr -+ 0) but show a more flat composition dependence. The shear moduli (Figure 
12) and relaxation times (Figure 13) obtained by the simulations are in very good 
agreement with the experimental values. In the case of the moduli there is again a 
near-linear composition dependence, whereas there is a more gradual variation in 
the shear relaxation time in the pure argon limit. In Figure 14 it is evident that 
experimental values for the times z B  are about to double the simulation values, 
increasing as pure argon is approached. These experimental results seems counter 
intuitive as relaxation times would be expected to increase for the more attractive 
component. 

0.0 0 2 0.4 0.6 0.8 1.0 
XI 

Figure 10 The dependence of the shear viscosity of the liquid on the mole fraction, x1 of Ar. Key: 
Experiment, 0 T = 120 K, 0 T = 140 K; simulation results, +, N = 256 T = 120 K, x ,  N = 108, 
T = 120 K, 0 ,  N = 256 T = 140 K ,  +, N = 108, T = 140 K. 
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0 
n O 
- - 

+ 
0 

1.2’ - 
V 

V 
D 0 

- 0 - 
0 

I I I I 
* 

Figure 11 The dependence of the bulk viscosity of the liquid on the mole fraction, x 1  of Ar. Key: 
Experiment, T = 120 K, 0 T = 140 K;  simulation results, +, N = 256 T = 120 K. x ,  N = 108, 
T = 120 K,  >, N = 2.56 T = 140 K, *, N = 108, T = 140 K. 

0.0 0.2 0.4 0.6 0.8 1 .o 

Figure I2 The dependence of the shear modulus of the liquid on the mole fraction, x1 of Ar. Key: 
Experiment, T = 120 K,  0 T = 140 K; simulation results, +, N = 256 T = 120 K, x ,  N = 108, 
T = 120 K ,  9, N = 256 T = 140 K, +, N = 108, T = 140 K. 
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0.0 0.2 0.4 0.6 0.8 l.0 

XI 

Figure 13 The dependence of the shear relaxation time of the liquid on the mole fraction, x i  of Ar. Key: 
Experiment, T = 120 K, 0 T = 140 K; simulation results in the [NVT] ensemble, +, N = 256 
T = 120 K, x ,  N = 108, T =  120 K, 0, N = 256 T = 140 K, 4, N = 108, T = 140 K. [NVE] at 
N = 256 at T = 120 K is 0 and T = 140 K N = 256 V. 
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0.0 0.2 0.4 0.6 0.8 I D  
XI  

Figure 14 The dependence of the bulk relaxation time of the liquid on the mole fraction, x,  of Ar. Key: 
Experiment, T = 120 K, 0 T = 140 K; simulation results, +, N = 256 T = 120 K, x ,  N = 108, 
T = 120 K, 0, N = 256 T = 140 K, 4, N = 108, T = 140 K all at  [NVT]. 
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146 D. M. HE.YES AND S. R. PRESTON 

Table 5 shows that the thermal conductivity of the Ar/Kr states at T = 120 K are 
insensitive to the composition, whereas at T = 140 K we observe a more dramatic 
decrease as K r - t  Ar  in  the mixlure. For these dense fluids we note that the 
m-component generalisation of the single component heat flux formula of Equation 
(58) gives statisticaHy the same results as the exact formula (56). This is because the 
terms tiQ,J and xJJ  are numerically small. The agreement between simulation and 
experimental values for the thermal conductivity is exceptional, as revealed in Figure 
15. 

Table 6 reviews diffusion coefficients and thermal transport coefficients of the 
mixtures. At the near-triple point state ( p  = 0.703 and T = 0.968, in reduced units) 
the self- and mutual diffusion coefficients are statistically indistinguishable between 
this and a previous simulation8. As has been found e l~ewhere , '~~  p D , , / ( p , D ,  + p 2 D , )  
2 1. Otherwise, we simply present the numbers for future reference, in the absence 
of any experimental data to compare with. 

We discovered that there are some differences between the Soret and Dufour 
coefficients evaluated by MD using the present correlation function approach. These 
cross thermodiffusion coefficients are extremely difficult to obtain by simu1ation;as 
the cross-correlation functions are more sensitive to the algorithm used to integrate 
the equations of motion than those of the autocorrelation functions. Consequently 
their integral is more susceptible to such errors. As in this previous study', an 
average of the two was taken as the best estimate of the thermal diffusion coefficients 
i.e., 0' = ( D i '  + 0;).12. We again give the values for D' and k ,  for future reference 
when experiments are performed on these systems. We give the values of DT and k,. in 

2 r 
00 0.2 04 0.6 @8 "C 

x 
Figure 15 A s  for Figure 11.  except that the thermal conductivity is considered, again at [NVT]. 
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Table 7 Transport coefficients of model binary mixtures of model LJ Ar-Kr reduced units. The statistical 
uncertainty is +5% for the piDi and p D I 2  but -30% for DT and k,. Key: simulation * Ref. [8]. All 
simulations are [NVT] except those in the rows denoted by t for which [NVE] dynamics was used. 

256 
256* 

256 
256 
256 
256 
256 
108 
256 
256 
256 
256 
256 

256 
256 
256 
256 
256 
256 
256 
256 
108 
256 
256 

0.5 0.703 
0.5 0.703 

0.02344 0.68997 
0.02344 0.68997 
0.20312 0.69872 
0.39844 0.70597 
0.39844 0.70597 
0.60185 0.71373 
0.60156 0.71018 
0.79687 0.70868 
0.79687 0.70868 
0.97656 0.70043 
0.97656 0.70043 

0.03906 0.64579 
0.03906 0.64579 
0.20312 0.64801 
0.39844 0.64724 
0.39844 0.64724 
0.60156 0.63850 
0.79687 0.61726 
0.79687 0.61726 
0.97222 0.56227 
0.97656 0.56227 
0.97656 0.56227 

0.968 
0.968 

1.0017 
1.0204 
1.0017 
1.0017 
0.9845 1 
1.0017 
1.0017 
1.0017 
1.0017 
1.0017 
1.0017 

1.16861 
1.1555 
1.16861 
1.1 6861 
1.1427 
1.16861 
1.16861 
1.1867 
1.16861 
1.16861 
1.1747 

0.0201 0.0 164 
0.0212 0.01 70 

0.000569 0.0192 
0.000564 0.0197 
0.00805 0.0187 
0.0 144 0.0180 
0.0142 0.0176 
0.0257 0.0138 
0.0275 0.0 150 
0.0458 0.00953 
0.0458 0.00955 
0.0690 0.00133 
0.0682 0.00134 

0.00156 0.0311 
0.00153 0.0309 
0.00955 0.0307 
0.0229 0.0283 
0.0223 0.0273 
0.0426 0.0229 
0.0710 0.0 146 
0.0716 0.0147 
0.106 0.00233 
0.110 0.0021 3 
0.111 0.00208 

0.0388 
0.0366 

0.0250 
0.0249 
0.0306 
0.0355 
0.0330 
0.0391 
0.0422 
0.0504 
0.0529 
0.0587 
0.0571 

0.0419 
0.0377 
0.0469 
0.0544 
0.0540 
0.0673 
0.0785 
0.0820 
0.0861 
0.0960 
0.0930 

- 1.61 
-0.885 

0.15 
- 0.086 
- 1.25 
-0.941 
- 2.70 
-2.67 
- 2.92 
-2.23 
- 2.22 
- 0.62 
-0.40 

-0.33 
0.030 

- 1.75 
- 1.57 
- 3.05 
- 5.45 
-6.01 
- 5.7 
- 2.70 
- 1.62 
-2.3 

-0.31 
- 

0.059 
-0.0345t 
-0.36 
-0.21 
- 0.64t 
-0.467 
- 0.475 
-0.257 
- 0.24t 
- 0.05 1 
- 0.30t 

- 0.076 
0.0078t 

-0.33 
-0.23 
-0.44t 
- 0.547 
- 0.44 
- 0.40t 
-0.15 
-0.08 
-0.12t 

Table 7 for reference, acknowledging that there are large percentage uncertainties in 
the simulation values. 

5 CONCLUSIONS 

In this report we have applied a time correlation function approach to obtain the 
transport coefficients of some model binary mixtures, for the first time using the 
correct definition of the heat flux, which is needed for over half of the transport 
coefficients. This expression uses the partial enthalpy of the two species, which were 
obtained from parallel constant pressure simulations at the same state points as the 
simulations used to compute the transport coefficients. It transpires that the contribu- 
tion of the enthalpy term to the thermal conductivity is small in practice because the 
magnitude of the extra terms it introduces in the definition of the thermal conductivity 
are numerically small at these densities. 

Most of the simulations were performed along two isotherms to compare with a 
previous experimental study of the dense fluid Ar-Kr mixtures. This is a region of 
the phase diagram well-suited to M D  as the correlation functions decay within the 
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-5 psec followed in these simulations (this is a typical upper time limit on the 
duration of the time correlation functions that can be followed with statistical 
certainty at these densities). Therefore the derived transport coefficients (obtained 
from Green-Kubo integration) are obtained free of ‘long-time tails’ which can make 
such studies impractical at low density and in the region of glassy behaviour. (The 
temperatures are sufficiently high at these densities to exclude any such viscous 
behaviour.) 

A detailed comparison with the experimental study of Mikhailenko et ~ 1 . ~ ~  reveals 
exceptional agreement between the simulation and experimental values for the 
average densities of the mixtures at the mole fractions considered. The shear 
viscosities and infinite frequency shear moduli are in very good agreement also. The 
simulation bulk viscosities show a variation with composition more in line with the 
shear viscosities (Diminishing with temperature increase and Ar content). However, 
the experimental bulk viscosities have a rather flat variation with composition. The 
experimental and simulation thermal conductivities agree well over all compositions 
and temperatures studied. 

We also calculated the species component self-diffusion and mutual diffusion 
coefficients, and the thermotransport. coefficients for these compositions, at this stage, 
largely for future reference as there is no experimental data available to compare 
with at present. The thermodiffusion coefficients have large statistical uncertainty by 
the Green-Kubo method of this study, but both are usually negative. 
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